

World Leader in Sample Preparation, Segmented Flow and Discrete Analyzer Technology

Troubleshooting for Total Phosphorous and Ortho-Phosphate Colorimetric Testing for Discrete and Segmented Flow Analyzers

Sarah Leibenguth
Technical Sales & Support Chemist

Topics for Discussion

- Method Principle
- Test Procedures
- Digestion Protocol
 - Digestion Reagents
 - Digestion pH
 - Temperature
 - Digestion Block
 - Reconstitution

Topics for Discussion

- Colorimetric Detection
 - Reagents
 - Interferences
 - Riley Ratio
 - pH and Matrix Matching

Method Principle and Approval

Method Principle

- TP and oP Colorimetric Reaction
- Ammonium Molybdate
 - Orthophosphate + Molybdate → Phosphomolybdic Acid
- Antimony Potassium Tartrate
 - Catalyst for Phosphomolybdic Acid
- Ascorbic Acid
 - Phosphomolybdic Acid + Ascorbic Acid → Blue Phosphomolybdic Complex

Test Procedures

- Ortho-Phosphate
 - EPA 365.1, version 2 (1993)
 - Standard Methods 4500-P F (18th, 19th, 20th)

- EPA 365.1, version 2 (1993)
- Standard Methods 4500-P B, F (18th, 19th, 20th)
- Total Kjeldahl Phosphorous
 - EPA 365.4

• Reactive Phosphorous

- Available oP for Colorimetric Detection
 - Prior to Hydrolysis or Digestion
 - Filtered or Non-Filtered Samples
 - Total Reactive or Dissolved Reactive

- Acid-Hydrolyzable Phosphorous
 - Pre-Treated by Acid Hydrolysis at Boiling Temperature
 - Filtered or Non-Filtered Samples
 - Total Acid-Hydrolyzable or Total Dissolved Acid-Hydrolyzable

• Total Phosphorous

- Digestion Pre-Treatment
 - Organically Bound Phosphorous Converted to oP
 - Filtered or Non-Filtered Samples
 - Total Phosphorous or Total Dissolved/Soluble Phosphorous

Total Phosphorous Digestion Protocol

Total Phosphorous Digestion

- Persulfate Digestion
 - Hot Plate or Block Digestor
 - Autoclave
- Kjeldahl Digestion
 - High Temperature Block Digestor

Total Phosphorous Persulfate Digestion

TP Persulfate Digestion

- Persulfate Digestion Reagent
 - Potassium Persulfate
 - Ammonium Persulfate
 - Easier to Dissolve
 - Sulfuric Acid
 - Prepare Combined Reagent Immediately Prior to Use
- Digestion pH
 - Persulfate Concentration
 - Acidic Digestion
 - Alkaline Digestion

TP Persulfate Digestion

- Temperature
 - Hot Plate or Block Digestor
 - Boil 30 min or 5 -10 mL Final Volume
 - Cool and Reconstitute
 - Block Stability
 - Autoclave
 - Approximately 120°C
 - Heat for 30 min
- Reconstitution
 - Not Necessary for Autoclave!
 - Accurate Volumes
 - Block Digestor Automation

Total Phosphorous Kjeldahl Digestion

TP Kjeldahl Digestion

- TKP Digestion Reagent
 - Sulfuric Acid
 - Potassium Sulfate
 - Heat to 380°C
 - Catalyst
- Digestion pH
 - Incomplete Digestions
 - Sample Acidity Level

TP Kjeldahl Digestion

- Evaporation Step in Protocol
 - Reduces Sample Volume Prior to Temperature Increase
 - Decreases Potential for Splatter
 - Final Volume Consistency
 - Example:

Step to 160°C and Hold for 30 min Step to 190°C and Hold for 30 min Approximately 5 mL Final Volume Heat to 380°C and Hold for 30 min

Reconstitution

- Cooling
 - Acid Volume Remaining in Digestion Tube
 - DI Water Addition
 - Cool Digestion Tubes
 - Reconstitute
- Dispense Accurately
 - Bottle Top Dispenser or Auto-Pipette
 - Samples and Standards Same Final Volume
 - Volumetric Digestion Tubes
- Vortex Mixer

Catalysts

- Mercury
 - Documentation
 - Colorless Digest
 - Preparing Digestion Reagent
 - Toxic
 - Waste Disposal Considerations
- Copper
 - Substitute for Mercury Catalyst
 - Blue/Green Final Digest
 - Less Toxic

TP and Ortho-Phosphate Colorimetric Reaction

Colorimetric Reaction

- Reagents
 - Stability
 - Storage
 - Preparation
 - Additional Considerations

- ACS Reagent Grade Chemicals
- Purifying System for Reagent Water
- Acid Rinse Reagent and Standard Containers

- Ammonium Molybdate
 - Remake Monthly
 - Stored in Plastic Bottle
 - Store in the Refrigerator
 - Prone to Precipitate and Turbidity
 - Dry Chemical White in Appearance
 - No Green Coloration
 - Prepared Reagent is Colorless

- Sulfuric Acid
 - Stored Indefinitely at Room Temperature
 - Cool Prior to Final Dilution
- Antimony Potassium Tartrate
 - Remake Monthly for Best Results
 - Stored in Glass Container
 - Store in the Refrigerator
 - Expired Reagent Concerns

- Prepared Color Reagent
 - Add Reagents in Specific Order
 - Sulfuric Acid
 - Antimony Potassium Tartrate
 - Ammonium Molybdate
 - Turbidity
 - 1 − 3 Week Stability
 - Store in Refrigerator in Plastic Bottle
 - 4 Hour Stability if Ascorbic Acid Added

- Ascorbic Acid Reagent
 - Stable 1 Week
 - Prepare Daily for Best Results
 - Stored in the Refrigerator
 - Discard if Yellow
 - Expired Reagent Concerns

Interferences

- Nitrite and Hexavalent Chromium
 - Low Concentration Readings
- Arsenate
 - Positive Interference
 - Similar Colorimetric Reaction
- Salt Concentrations
 - Less Than 1% Error for Salt Concentrations up to 20%(w/v)
- Turbidity
 - Filtration if Applicable

Interferences

- Iron, Copper, and Silica
 - High Silica Concentrations May Cause Positive Interference
 - 50 mg Fe³⁺/L, 10 mg Cu/L and 10 mg SiO₂/L Tolerated
 - High Iron Concentrations May Cause Precipitation of Phosphorous
- Surfactants in SFA Reagents
 - SDS or Triton
 - No BRIJ!

Riley Ratio

- Acidic Environment Needed to Form Phosphomolybdic Acid
- The [H+]: [Mo] Ratio for Stable and Rapid Results
- Sample pH Changes Riley Ratio
- Final Sample Digest Changes Riley Ratio
- Method Adjustments for Acidified or Digested Samples

pH and Matrix Matching

- Sample Matrix and Carrier Solution
 - Acidified Samples
 - Saline Samples
 - Digested Samples
 - Standards and Control Treatment

World Leader in Sample Preparation, Segmented Flow and Discrete Analyzer Technology